PrintForm
Definitions
action
sets
Sections
AutomataTheory
Doc
At:
pump
theorem
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1.
Alph:
Type
2.
S:
ActionSet(Alph)
3.
N:
4.
s:
S.car
5.
f:
S.car
N
6.
g:
N
S.car
7.
g o f = Id
8.
f o g = Id
9.
A:
Alph*
10.
N < ||A||
11.
i:
||A||
12.
j:
||A||
13.
i < j
14.
f((S:A[||A||-i..||A||
]
s)) = f((S:A[||A||-j..||A||
]
s))
15.
(S:A[||A||-i..||A||
]
s) = (S:A[||A||-j..||A||
]
s)
16.
0 = 0
(S:(A[0..||A||-j
]) @ (A[||A||-i..||A||
])
s) = (S:A
s)
By:
Inst
Thm*
S:ActionSet(Alph), s:S.car, L1,L2,L:Alph*. (S:L1
s) = (S:L2
s)
(S:L @ L1
s) = (S:L @ L2
s) [Alph;S;s;A[||A||-i..||A||
];A[||A||-j..||A||
];A[0..||A||-j
]]
Generated subgoals:
1
(S:A[||A||-i..||A||
]
s) = (S:A[||A||-j..||A||
]
s)
2
17.
(S:(A[0..||A||-j
]) @ (A[||A||-i..||A||
])
s) = (S:(A[0..||A||-j
]) @ (A[||A||-j..||A||
])
s)
(S:(A[0..||A||-j
]) @ (A[||A||-i..||A||
])
s) = (S:A
s)
About: