PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump thm cor 1 1 1 2 1 1 1

1. n:
2. Alph: Type
3. S: ActionSet(Alph)
4. s: S.car
5. f: S.car
6. #(S.car)=n
7. l:Alph*. (S:ls) = f
8. k:
9. 0 < k
10. (l:Alph*. ||l|| < k-1 & (S:ls) = f) (l:Alph*. ||l||n & (S:ls) = f)
11. l: Alph*
12. ||l|| < k
13. (S:ls) = f

l:Alph*. ||l||n & (S:ls) = f

By: Inst Thm* S:ActionSet(Alph), N:, s:S.car. #(S.car)=N (A:Alph*. N < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As)))) [Alph;S;n;s]

Generated subgoal:

114. A:Alph*. n < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As)))
l:Alph*. ||l||n & (S:ls) = f


About:
existslistandequaluniverse
intless_thannatural_numberimpliessubtract