| automata | Def Automata(Alph;States) == (States   Alph   States)  States  (States    ) Thm*  | 
| card_ge | Def |S|  |T| ==  f:(S   T). Surj(S; T; f) Thm*  | 
| connected | Def Con(A) ==  s:St.  l:Alph*. (Result(A)l) = s Thm*  | 
| refine | Def A1  A2 
==  x,y:Alph*. (Result(A1)x) = (Result(A1)y)  S1   (Result(A2)x) = (Result(A2)y)  S2 Thm*  | 
| surject | Def Surj(A; B; f) ==  b:B.  a:A. f(a) = b Thm*  | 
| compute_list | Def Result(DA)l
 == if null(l)  InitialState(DA) else  DA((Result(DA)tl(l)),hd(l)) fi
 (recursive) 
 Thm*  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h 
 Thm*  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t 
 Thm*  | 
| DA_act | Def  a == 1of(a) 
 Thm*  | 
| DA_init | Def InitialState(a) == 1of(2of(a)) 
 Thm*  | 
| null | Def null(as) == Case of as; nil  true  ; a.as'  false   
 Thm*  
 Thm* null(nil)  | 
| pi1 | Def 1of(t) == t.1 Thm*  | 
| pi2 | Def 2of(t) == t.2 
 Thm*  | 
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |