| automata | Def Automata(Alph;States) == (States   Alph   States)  States  (States    ) Thm*  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) Thm*  | 
| lang_auto | Def A(g) ==  < (  s,a. a.s),nil,g > 
 Thm*  | 
| lang_rel | Def L-induced Equiv(x,y) ==  z:A*. L(z @ x)   L(z @ y) Thm*  | 
| languages | Def LangOver(Alph) == Alph*   Prop 
 Thm*  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) Thm*  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) Thm*  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) Thm*  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  a.(as' @ bs)  (recursive) 
 Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
About:
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |