Thms automata 4 Sections AutomataTheory Doc

automata Def Automata(Alph;States) == (StatesAlphStates)States(States)

Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

lang_auto Def A(g) == < (s,a. a.s),nil,g >

Thm* Alph:Type, L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))). A(g) Automata(Alph;x,y:Alph*//(x L-induced Equiv y))

lang_rel Def L-induced Equiv(x,y) == z:A*. L(z @ x) L(z @ y)

Thm* A:Type, L:LangOver(A). L-induced Equiv A*A*Prop

languages Def LangOver(Alph) == Alph*Prop

Thm* Alph:Type{i}. LangOver(Alph) Type{i'}

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

About:
!abstractionimpliesallpropmemberandrecursive_def_notice
list_indconsuniverselistfunctionapplypair
lambdanilquotientboolproduct