Thms automata 4 Sections AutomataTheory Doc

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

lang_auto Def A(g) == < (s,a. a.s),nil,g >

Thm* Alph:Type, L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))). A(g) Automata(Alph;x,y:Alph*//(x L-induced Equiv y))

lang_rel Def L-induced Equiv(x,y) == z:A*. L(z @ x) L(z @ y)

Thm* A:Type, L:LangOver(A). L-induced Equiv A*A*Prop

languages Def LangOver(Alph) == Alph*Prop

Thm* Alph:Type{i}. LangOver(Alph) Type{i'}

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

About:
!abstractionimpliesallpropmemberspreaduniverse
functionproductandrecursive_def_noticelist_indconslist
btruebfalseboolniltokennatural_numberapply
pairlambdaquotientifthenelse