PrintForm
Definitions
det
automata
Sections
AutomataTheory
Doc
At:
reach
lemma
1
2
2
1
1
1
1
1
1
1.
Alph:
Type
2.
S:
ActionSet(Alph)
3.
si:
S.car
4.
nn:
5.
f:
nn
Alph
6.
g:
Alph
nn
7.
Fin(S.car)
8.
InvFuns(
nn; Alph; f; g)
9.
n:
10.
0 < n
11.
RL:
S.car*
12.
0 < ||RL||
13.
||RL||
n-1+1
14.
RL[(-1+||RL||)] = si
15.
||RL|| = n-1+1
16.
i:
||RL||, j:
i.
RL[i] = RL[j]
17.
s:S.car. mem_f(S.car;s;RL)
(
w:Alph*. (S:w
si) = s)
18.
k:
. k
nn
(
RLa:S.car*. (
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa)) & (
a:Alph. g(a) < k
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa)) & (
s:S.car. mem_f(S.car;s;RLa)
(
w:Alph*. (S:w
si) = s)))
19.
RLa:
S.car*
20.
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa)
21.
a:Alph. g(a) < nn
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa)
22.
s:S.car. mem_f(S.car;s;RLa)
(
w:Alph*. (S:w
si) = s)
23.
La':
S.car*
24.
t:S.car. mem_f(S.car;t;RLa)
mem_f(S.car;t;RL)
mem_f(S.car;t;La')
25.
t:S.car. mem_f(S.car;t;La')
mem_f(S.car;t;RLa)
26.
||La'||
1
mem_f(S.car;hd(La');RL)
27.
||La'||
1
hd(if ||RL||+1-1
0
hd(La').RL else nth_tl(||RL||+1-1-1;RL) fi) = si
By:
SplitOnConclITE
Generated subgoal:
1
28.
0 < ||RL||+1-1
hd(nth_tl(||RL||+1-1-1;RL)) = si
About: