is mentioned by
[nsub_bij_least_preimage_inverse] | |
[compose_iter_inverses] | |
[next_nat_pair_vs_prev_nat_pair] | |
[union_sigma_inverses] | |
[bij_imp_exists_inv2] | |
[bij_imp_exists_inv_version2] | |
[fun_with_inv_is_bij_version2] | |
[fun_with_inv2_is_bij_rev] | |
[fun_with_inv2_is_bij] | |
[inv_funs_2_unique] | |
[fun_with_inv2_is_surj_rev] | |
[invfuns_are_inj] | |
[fun_with_inv2_is_inj_rev] | |
[invfuns_are_surj] | |
[inv_funs_2_sym] | |
Thm* (1-1-Corr x:A,y:B. R(x;y)) Thm* Thm* (f:(AB), g:(BA). Thm* (InvFuns(A;B;f;g) & (x:A, y:B. R(x;y) y = f(x) & x = g(y))) | [one_one_corr_rel_vs_invfuns] |
[inv_funs_iff_inv_funs_2] | |
[sq_stable__inv_funs_2] | |
[fun_with_inv2_is_surj] | |
[fun_with_inv2_is_inj] | |
[inv_funs_2_identity] | |
[inv_pair] | |
[is_one_one_corr] | |
Def == f:(AA'), g:(A'A), F:(x:AB(x)B'(f(x))), G:(x:AB'(f(x))B(x)). Def == InvFuns(A;A';f;g) & (u:A. InvFuns(B(u);B'(f(u));F(u);G(u))) | [one_one_corr_fams] |
[one_one_corr_2] |
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html