(14steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
partition
type
1
1
2
1
1.
A
: Type
2.
B
: Type
3.
P
:
A
B
Prop
4.
x
:
A
.
!
y
:
B
.
P
(
x
;
y
)
5.
f
:
A
B
6.
x
:
A
.
P
(
x
;
f
(
x
))
7.
u
:
y
:
B
{
x
:
A
|
P
(
x
;
y
) }
<
f
(2of(
u
)),2of(
u
)> =
u
y
:
B
{
x
:
A
|
P
(
x
;
y
) }
By:
Analyze-1
Generated subgoal:
1
7.
y
:
B
8.
u1
: {
x
:
A
|
P
(
x
;
y
) }
<
f
(2of(<
y
,
u1
>)),2of(<
y
,
u1
>)> = <
y
,
u1
>
y
:
B
{
x
:
A
|
P
(
x
;
y
) }
7
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(14steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc