(14steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
partition
type
1
1
1.
A
: Type
2.
B
: Type
3.
P
:
A
B
Prop
4.
x
:
A
.
!
y
:
B
.
P
(
x
;
y
)
5.
f
:
A
B
6.
x
:
A
.
P
(
x
;
f
(
x
))
A
~ (
y
:
B
{
x
:
A
|
P
(
x
;
y
) })
By:
Witness:
x
.<
f
(
x
),
x
> |
yx
.2of(
yx
)
Generated subgoals:
1
7.
x
:
A
x
{
x@0
:
A
|
P
(
x@0
;
f
(
x
)) }
1
step
2
InvFuns(
A
;
y
:
B
{
x
:
A
|
P
(
x
;
y
) };
x
.<
f
(
x
),
x
>;
yx
.2of(
yx
))
9
steps
3
7. (
y
:
B
{
x
:
A
|
P
(
x
;
y
) })
A
8.
x
:
A
x
{
x@0
:
A
|
P
(
x@0
;
f
(
x
)) }
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(14steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc