Thms exponent Sections AutomataTheory Doc

geom_series Def (qn) == if n=0 0 else (qn-1)+(qn-1) fi (recursive)

Thm* q,n:. (qn)

lelt Def i j < k == ij & j < k

nat Def == {i:| 0i }

Thm* Type

nat_plus Def == {i:| 0 < i }

Thm* Type

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_than
intint_eqbtruebfalseboolrecursive_def_noticeifthenelse
natural_numbermultiplysubtractsetuniverseandadd