PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 3 1 1 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. n:
4. x:Alph*. R(x,x)
5. x,y:Alph*. R(x,y) R(y,x)
6. x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)
7. x,y,z:Alph*. R(x,y) R((z @ x),z @ y)
8. w: nAlph*
9. l:Alph*. i:n. R(l,w(i))
10. a: Alph*
11. b: Alph*
12. c: Alph*
13. ||a||nn
14. f: Alph*n
15. x:Alph*. R(x,w(f(x)))
16. f1: nn(nn)
17. Bij(nn; (nn); f1)

a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)

By: Inst Thm* n:{1...}, m:{n+1...}, f:(mn). i,j:m. i < j & f(i) = f(j) [nn;nn+1;j.f1( < f((a[||a||-j..||a||]) @ b),f((a[||a||-j..||a||]) @ c) > )]

Generated subgoals:

1 1nn
218. i,j:(nn+1). i < j & (j.f1( < f((a[||a||-j..||a||]) @ b),f((a[||a||-j..||a||]) @ c) > ))(i) = (j.f1( < f((a[||a||-j..||a||]) @ b),f((a[||a||-j..||a||]) @ c) > ))(j) (nn)
a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)


About:
existslistandless_thanapplymultiply
addnatural_numberlambdapairsubtractuniverse
functionpropallimpliesproduct