PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 5 1 1 1 1 1 1 2 1 1 1 1 2 1

1. Alph: Type
2. n:
3. n1:
4. f: n1Alph
5. Bij(n1; Alph; f)
6. f:((nn1)(n1n)). Bij(nn1; (n1n); f)
7. f1: (nn1)(n1n)
8. g: (n1n)nn1
9. InvFuns(nn1; (n1n); f1; g)
10. a1: (n1n)
11. a2: (n1n)
12. ((f o g(a1))[n]) = ((f o g(a2))[n]) {l:(Alph*)| ||l|| = n }
13. (i.(f o g(a1))(i)) = (i.(f o g(a2))(i)) nAlph

a1 = a2

By:
Analyze 5
THEN
Thin 6


Generated subgoal:

15. Inj(n1; Alph; f)
6. f:((nn1)(n1n)). Bij(nn1; (n1n); f)
7. f1: (nn1)(n1n)
8. g: (n1n)nn1
9. InvFuns(nn1; (n1n); f1; g)
10. a1: (n1n)
11. a2: (n1n)
12. ((f o g(a1))[n]) = ((f o g(a2))[n]) {l:(Alph*)| ||l|| = n }
13. (i.(f o g(a1))(i)) = (i.(f o g(a2))(i)) nAlph
a1 = a2


About:
equalnatural_numberuniversefunctionexists
setlistintapplylambda