PrintForm Definitions finite sets Sections AutomataTheory Doc

At: fin dec fin 2 1 2 2 3 1

1. n:
2. 0 < n
3. T:Type, B:(TProp). (f:((n-1)T), g:(T(n-1)). InvFuns((n-1); T; f; g)) & (t:T. Dec(B(t))) (m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g))
4. T: Type
5. B: TProp
6. f: nT
7. g: Tn
8. g o f = Id
9. f o g = Id
10. t:T. Dec(B(t))
11. f (n-1){t:T| g(t) < n-1 }
12. g {t:T| g(t) < n-1 }(n-1)

f:((n-1){t:T| g(t) < n-1 }), g@0:({t:T| g(t) < n-1 }(n-1)). InvFuns((n-1); {t:T| g(t) < n-1 }; f; g@0)

By: InstConcl [f;g]

Generated subgoals:

1 f (n-1){t:T| g(t) < n-1 }
2 g {t:T| g(t) < n-1 }(n-1)
3 InvFuns((n-1); {t:T| g(t) < n-1 }; f; g)
413. g@0: {t:T| g(t) < n-1 }(n-1)
InvFuns((n-1); {t:T| g(t) < n-1 }; f; g@0) Prop
513. f1: (n-1){t:T| g(t) < n-1 }
(g@0:({t:T| g(t) < n-1 }(n-1)). InvFuns((n-1); {t:T| g(t) < n-1 }; f1; g@0)) Prop


About:
existsfunctionnatural_numbersubtractsetless_thanapplyint
alluniversepropimpliesandequalmember