PrintForm Definitions finite sets Sections AutomataTheory Doc

At: fin dec fin 2 1 2 2 4

1. n:
2. 0 < n
3. T:Type, B:(TProp). (f:((n-1)T), g:(T(n-1)). InvFuns((n-1); T; f; g)) & (t:T. Dec(B(t))) (m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g))
4. T: Type
5. B: TProp
6. f: nT
7. g: Tn
8. g o f = Id
9. f o g = Id
10. t:T. Dec(B(t))
11. f (n-1){t:T| g(t) < n-1 }
12. g {t:T| g(t) < n-1 }(n-1)
13. m:, f:(m{t:{t:T| g(t) < n-1 }| B(t) }), g@0:({t:{t:T| g(t) < n-1 }| B(t) }m). InvFuns(m; {t:{t:T| g(t) < n-1 }| B(t) }; f; g@0)

m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g)

By:
RW GuardC 11
THEN
RW GuardC 12
THEN
ExRepD


Generated subgoal:

111. f (n-1){t:T| g(t) < n-1 }
12. g {t:T| g(t) < n-1 }(n-1)
13. m:
14. f1: m{t:{t:T| g(t) < n-1 }| B(t) }
15. g@0: {t:{t:T| g(t) < n-1 }| B(t) }m
16. InvFuns(m; {t:{t:T| g(t) < n-1 }| B(t) }; f1; g@0)
m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g)


About:
existsfunctionnatural_numbersetapplyintless_thanall
universepropimpliesandsubtractequalmember