PrintForm
Definitions
finite
sets
Sections
AutomataTheory
Doc
At:
phole
aux
2
1
1.
n:
{1+1...}
2.
f:(
(n-1+1)
(n-1)).
i:
(n-1+1), j:
i. f(i) = f(j)
3.
f:
(n+1)
n
iii:
(n+1). (
ii:{(iii+1)..(n+1)
}, jj:
ii.
f(ii) = f(jj))
(
i:
(iii+1), j:
i. f(i) = f(j))
By:
BackThru
Thm*
i:
, j:{i+1...}, E:({i..j
}
Prop). E(i)
(
k:{(i+1)..j
}. E(k-1)
E(k))
(
k:{i..j
}. E(k))
THEN
All ArithSimp
Generated subgoals:
1
1.
n:
{2...}
2.
f:(
n
(-1+n)).
i:
n, j:
i. f(i) = f(j)
3.
f:
(1+n)
n
(
ii:{1..(1+n)
}, jj:
ii.
f(ii) = f(jj))
(
i:
1, j:
i. f(i) = f(j))
2
1.
n:
{2...}
2.
f:(
n
(-1+n)).
i:
n, j:
i. f(i) = f(j)
3.
f:
(1+n)
n
iii:{1..(1+n)
}. ((
ii:{iii..(1+n)
}, jj:
ii.
f(ii) = f(jj))
(
i:
iii, j:
i. f(i) = f(j)))
(
ii:{(1+iii)..(1+n)
}, jj:
ii.
f(ii) = f(jj))
(
i:
(1+iii), j:
i. f(i) = f(j))
About: