PrintForm Definitions finite sets Sections AutomataTheory Doc

At: phole aux 2

1. n: {1+1...}
2. f:((n-1+1)(n-1)). i:(n-1+1), j:i. f(i) = f(j)
3. f: (n+1)n

i:(n+1), j:i. f(i) = f(j)

By: Assert (iii:(n+1). (ii:{(iii+1)..(n+1)}, jj:ii. f(ii) = f(jj)) (i:(iii+1), j:i. f(i) = f(j)))

Generated subgoals:

1 iii:(n+1). (ii:{(iii+1)..(n+1)}, jj:ii. f(ii) = f(jj)) (i:(iii+1), j:i. f(i) = f(j))
24. iii:(n+1). (ii:{(iii+1)..(n+1)}, jj:ii. f(ii) = f(jj)) (i:(iii+1), j:i. f(i) = f(j))
i:(n+1), j:i. f(i) = f(j)


About:
existsnatural_numberaddequalapply
allimpliesfunctionsubtract