grammar 1 Sections AutomataTheory Doc

con_free_g Def ConFreeG(G) == i:||G.prod||. (a:V. [inl(a)] = 1of(G.prod[i]) (V+T List)) & ||2of(G.prod[i])|| > 0

Thm* V,T:Type, G:Grammar(V;T). ConFreeG(G) Prop

g_prod Def g.prod == 1of(g)

Thm* V,T:Type, g:Grammar(V;T). g.prod ((V+T List)(V+T)*)*

select Def l[i] == hd(nth_tl(i;l))

Thm* A:Type, l:A*, n:. 0n n < ||l|| l[n] A

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

list_p Def T List == {l:(T*)| ||l|| > 0 }

Thm* T:Type. (T List) Type

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

gt Def i > j == j < i

Thm* i,j:. i > j Prop

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)

Thm* A:Type, as:A*, i:. nth_tl(i;as) A*

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

lelt Def i j < k == ij & j < k

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

le_int Def ij == j < i

Thm* i,j:. ij

le Def AB == B < A

Thm* i,j:. ij Prop

lt_int Def i < j == if i < j true ; false fi

Thm* i,j:. i < j

bnot Def b == if b false else true fi

Thm* b:. b

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberifthenelsebfalse
btrueboollessintless_thanlist_indniluniverse
listandtokennatural_numberrecursive_def_noticesubtractsetspread
functionproductaddunionexistsequalconsinl