con_sen_g |
Def ConSenG(G) == i: ||G.prod||. ||1of(G.prod[i])|| ||2of(G.prod[i])||
Thm* V,T:Type, G:Grammar(V;T). ConSenG(G) Prop
|
g_prod |
Def g.prod == 1of(g)
Thm* V,T:Type, g:Grammar(V;T). g.prod ((V+T List ) (V+T)*)*
|
select |
Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A*, n: . 0 n  n < ||l||  l[n] A
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
length_p |
Def ||l|| == ||l||
Thm* T:Type, l:(T List ). ||l|| 
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A*. ||l||
Thm* ||nil|| 
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
lelt |
Def i j < k == i j & j < k
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
nth_tl |
Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A*, i: . nth_tl(i;as) A*
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
le_int |
Def i j ==  j < i
Thm* i,j: . i j 
|
lt_int |
Def i < j == if i < j true ; false fi
Thm* i,j: . i < j 
|
bnot |
Def  b == if b false else true fi
Thm* b: .  b 
|