Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
firstn Def firstn(n;as) == Case of as; nil nil ; a.as' if 0 < n [a / firstn(n-1;as')] else nil fi (recursive)
Thm* A:Type, as:A List, n:. firstn(n;as) A List
int_iseg Def {i...j} == {k:| ik & kj }
Thm* i,j:. {i...j} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
top Def Top == Void given Void
Thm* Top Type

About:
listconsnillist_ind
ifthenelsevoidintnatural_numberaddsubtractset
isectrecursive_def_noticeuniversemembertopandall
!abstraction

Definitions graph 1 1 Sections Graphs Doc