(6steps total) PrintForm Definitions graph 1 1 Sections Graphs Doc

At: append upto 1

d:, i,j,k:. j-i = d jk (upto(i;k) ~ (upto(i;j) @ upto(j;k)))

By:
InductionOnNat
THEN
UnivCD
THEN
RW (AddrC [1] (RecUnfoldC `upto`) THENC AddrC [2;1] (RecUnfoldC `upto`)) 0
THEN
SplitOnConclITE
THEN
SplitOnConclITE
THEN
Reduce 0
THEN
Try (Complete Auto)


Generated subgoals:

11. i:
2. j:
3. k:
4. j-i = 0
5. jk
6. i < k
7. ji
[i / upto(i+1;k)] ~ upto(j;k)
1 step
 
21. i:
2. j:
3. k:
4. j-i = 0
5. jk
6. ki
7. ji
nil ~ upto(j;k)
1 step
 
31. d:
2. 0 < d
3. i,j,k:. j-i = d-1 jk (upto(i;k) ~ (upto(i;j) @ upto(j;k)))
4. i:
5. j:
6. k:
7. j-i = d
8. jk
9. i < k
10. i < j
[i / upto(i+1;k)] ~ [i / (upto(i+1;j) @ upto(j;k))]
1 step

About:
consnilintnatural_numberaddsubtractequalsqequalimpliesall

(6steps total) PrintForm Definitions graph 1 1 Sections Graphs Doc