(8steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc

At: div rem properties 1 1 1

1. n:
(0 n) = 0

By: ((Inst Thm* a:, n:. a = (a n)n+(a rem n) [0;n]) THEN (Decide (0n))) THENL [Inst Thm* a:, n:. 0(a rem n) & (a rem n) < n [0;n] ;Inst Thm* a:{...0}, n:{...-1}. 0(a rem n) & (a rem n) > n [0;n]]

Generated subgoals:

12. 0 = (0 n)n+(0 rem n)
3. 0n
4. 0(0 rem n) & (0 rem n) < n
(0 n) = 0
1 step
 
22. 0 = (0 n)n+(0 rem n)
3. 0n
4. 0(0 rem n) & (0 rem n) > n
(0 n) = 0
1 step

About:
intnatural_numberminusaddmultiplydivideremainderless_thanequalandall

(8steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc