Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
sum Def sum(f(x) | x < k) == primrec(k;0;x,n. n+f(x))
Thm* n:, f:(n). sum(f(x) | x < n)
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
gt Def i > j == j < i
Thm* i,j:. (i > j) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_indboolbfalsebtrueint
natural_numberaddint_eqless_thansetlambdafunction
recursive_def_noticeuniversememberpropimpliesall!abstraction

Definitions graph 1 2 Sections Graphs Doc