Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
arrows Def r- > L^k == n:. rn (G:({s:(n List)| ||s|| = k & (x,y:||s||. x < y s[x] < s[y]) }||L||). c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = k (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c))
Thm* r:, k:, L: List. r- > L^k Prop
increasing Def increasing(f;k) == i:(k-1). f(i) < f(i+1)
Thm* k:, f:(k). increasing(f;k) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
sum Def sum(f(x) | x < k) == primrec(k;0;x,n. n+f(x))
Thm* n:, f:(n). sum(f(x) | x < n)

About:
listconsnillist_indintnatural_number
addsubtractless_thansetlambdaapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc