Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
list-dec Def L[i--] == mklist(||L||;j.if j=i L[j]-1 else L[j] fi)
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_ind
ifthenelseintnatural_numberaddsubtractless_thanset
lambdarecursive_def_noticeuniversememberpropimpliesall
!abstraction

Definitions graph 1 2 Sections Graphs Doc