Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
arrows Def r- > L^k == n:. rn (G:({s:(n List)| ||s|| = k & (x,y:||s||. x < y s[x] < s[y]) }||L||). c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = k (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c))
Thm* r:, k:, L: List. r- > L^k Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat_plus Def == {i:| 0 < i }
Thm* Type
not Def A == A False
Thm* A:Prop. (A) Prop
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
sum Def sum(f(x) | x < k) == primrec(k;0;x,n. n+f(x))
Thm* n:, f:(n). sum(f(x) | x < n)

About:
listnillist_indintnatural_numberadd
less_thansetlambdafunctionrecursive_def_noticeuniverseequal
memberpropimpliesandfalseallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc