| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
member-paren | Def member-paren(x,y.E(x;y);i;s) == ( x s.InjCase(x; a. E(a;i), E(a;i))) |
|
l_bexists | Def ( x L.P(x)) == reduce( x,b. P(x)  b;false ;L) |
| | Thm* T:Type, L:T List, P:(T  ). ( x L.P(x))  |
|
l_member | Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |