Definitions
graph
1
2
Sections
Graphs
Doc
Some definitions of interest.
assert
Def
b == if b
True else False fi
Thm*
b:
. b
Prop
iff
Def
P
Q == (P
Q) & (P
Q)
Thm*
A,B:Prop. (A
B)
Prop
int_seg
Def
{i..j
} == {k:
| i
k < j }
Thm*
m,n:
. {m..n
}
Type
length
Def
||as|| == Case of as; nil
0 ; a.as'
||as'||+1 (recursive)
Thm*
A:Type, l:A List. ||l||
Thm*
||nil||
nat
Def
== {i:
| 0
i }
Thm*
Type
select
Def
l[i] == hd(nth_tl(i;l))
Thm*
A:Type, l:A List, n:
. 0
n
n < ||l||
l[n]
A
About:
Definitions
graph
1
2
Sections
Graphs
Doc