Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_indbool
ifthenelseassertintnatural_numberaddless_thanset
recursive_def_noticeuniversememberpropimpliesandfalsetrue
all!abstraction

Definitions graph 1 2 Sections Graphs Doc