Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
member-left-paren Def member-left-paren(x,y.E(x;y);i;s) == (xs.InjCase(x; a. E(a;i), false))
l_bexists Def (xL.P(x)) == reduce(x,b. P(x) b;false;L)
Thm* T:Type, L:T List, P:(T). (xL.P(x))
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nat Def == {i:| 0i }
Thm* Type
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_indboolbfalse
ifthenelseassertintnatural_numberaddless_thandecide
setlambdafunctionrecursive_def_noticeuniverseequal
memberpropimpliesandfalsetrueallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc