Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
path Def path(the_graph;p) == 0 < ||p|| & (i:(||p||-1). p[i]-the_graph- > p[(i+1)])
Thm* For any graph p:V List. path(the_graph;p) Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
not Def A == A False
Thm* A:Prop. (A) Prop
null Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T List. null(as)
Thm* null(nil)

About:
productproductlistnillist_ind
boolbfalsebtrueifthenelseassertintnatural_numberaddsubtractless_than
functionrecursive_def_noticeuniverseequalmembertopprop
impliesandfalsetrueallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc