| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
connect | Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y |
| | Thm* For any graph
x,y:V. x-the_graph- > *y Prop |
|
path | Def path(the_graph;p) == 0 < ||p|| & ( i: (||p||-1). p[i]-the_graph- > p[(i+1)]) |
| | Thm* For any graph
p:V List. path(the_graph;p) Prop |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
null | Def null(as) == Case of as; nil true ; a.as' false |
| | Thm* T:Type, as:T List. null(as)  |
| | Thm* null(nil)  |