Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
assert Def b == if b True else False fi
Thm* b:. b Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
not Def A == A False
Thm* A:Prop. (A) Prop
null Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T List. null(as)
Thm* null(nil)
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
pairproductproductlistnillist_ind
boolbfalsebtrueifthenelseassertintnatural_numberaddless_than
setapplyfunctionrecursive_def_noticeuniverseequal
membertoppropimpliesfalsetrueallexists
!abstraction

Definitions graph 1 2 Sections Graphs Doc