Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
list-connect Def L-G- > *x == (yL.y-G- > *x)
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_exists Def (xL.P(x)) == x:T. (x L) & P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop

About:
productproductlistconslist_ind
natural_numberless_thanfunctionrecursive_def_noticeuniverseequalmember
toppropimpliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc