| Some definitions of interest. |
|
df-traversal | Def df-traversal(G;s) == ( i:Vertices(G), s1,s2:traversal(G). s = (s1 @ [inr(i)] @ s2) traversal(G)  ( j:Vertices(G). (inr(j) s2)  (inl(j) s2)  j-G- > *i)) & ( i:Vertices(G), s1,s2:traversal(G). ( j:Vertices(G). i-G- > *j  non-trivial-loop(G;j))  s = (s1 @ [inl(i)] @ s2) traversal(G)  ( j:Vertices(G). i-G- > *j  (inr(j) s2))) |
|
paren | Def paren(T;s) == s = nil (T+T) List ( t:T, s':(T+T) List. s = ([inl(t)] @ s' @ [inr(t)]) & paren(T;s')) ( s',s'':(T+T) List. ||s'|| < ||s|| & ||s''|| < ||s|| & s = (s' @ s'') & paren(T;s') & paren(T;s'')) (recursive) |
| | Thm* T:Type, s:(T+T) List. paren(T;s) Prop |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
list-list-connect | Def L1-G- > *L2 == ( x L2.L1-G- > *x) |
|
list-connect | Def L-G- > *x == ( y L.y-G- > *x) |
|
non-trivial-loop | Def non-trivial-loop(G;i) == j:Vertices(G). j = i & i-G- > *j & j-G- > *i |
|
traversal | Def traversal(G) == (Vertices(G)+Vertices(G)) List |
| | Thm* For any graph
Traversal Type |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
l_member | Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |