(41steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: Ramsey 2 1 2 2 2 1 2 3

1. k:
2. 0 < k
3. 0 < k-1 (L: List. 0 < ||L|| (r:. r- > L^k-1))
4. k = 1
5. 0 < k
6. d:
7. d1:. d1 < d (L: List. sum(L[i] | i < ||L||) = d1 0 < ||L|| (r:. r- > L^k))
8. L: List
9. sum(L[i] | i < ||L||) = d
10. 0 < ||L||
11. (i:||L||. L[i] < k)
12. i:||L||. 2L[i]
13. L: List. sum(L[i] | i < ||L||) = d-1 0 < ||L|| (r:. r- > L^k)
14. i: ||L||
sum(L[i--][i@0] | i@0 < ||L||) = d-1

By: (Inst Thm* n:, f,g:(n), d:. sum(f(x)-g(x) | x < n) = d sum(f(x) | x < n) = sum(g(x) | x < n)+d [||L||;j. L[j];j. L[i--][j]]) THENA (Auto THEN (AutoInst [i]) THEN (RWO Thm* L: List, i:||L||. 0 < L[i] ||L[i--]|| = ||L|| 0) THEN (AutoInst [i]))

Generated subgoal:

115. d:. sum(L[x]-L[i--][x] | x < ||L||) = d sum(L[x] | x < ||L||) = sum(L[i--][x] | x < ||L||)+d
sum(L[i--][i@0] | i@0 < ||L||) = d-1
7 steps

About:
listintnatural_numberaddsubtractless_than
functionequalimpliesall
exists

(41steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc