At:
Ramsey-recursion
1
2
1
1
1
1
1.
r:
2.
k:
3.
L:
List
4.
R:
List
5.
2
k
6.
||R|| = ||L||
7.
i:
||L||. 0 < L[i] 
R[i]- > L[i--]^k
8.
r- > R^k-1
9.
n:
10.
r+1
n
11.
G: {s:(
n List)| ||s|| = k
& (
x,y:
||s||. x < y 
s[x] < s[y]) }

||L||
12.
c:
||R||
13.
f:
R[c]

(n-1)
14.
increasing(f;R[c])
15.
s:
R[c] List. ||s|| = k-1

(
x,y:
||s||. x < y 
s[x] < s[y]) 
G(map(f;s) @ [(n-1)]) = c
16.
0 < L[c]
17.
R[c]- > L[c--]^k
18.
G:({s:(
R[c] List)| ||s|| = k
& (
x,y:
||s||. x < y 
s[x] < s[y]) }

||L[c--]||).
c@0:
||L[c--]||, f:(
L[c--][c@0]

R[c]).
increasing(f;L[c--][c@0])
& (
s:
L[c--][c@0] List. ||s|| = k

(
x,y:
||s||. x < y 
s[x] < s[y]) 
G(map(f;s)) = c@0)
19.
s:
R[c] List
20.
||s|| = k
21.
x,y:
||s||. x < y 
s[x] < s[y]
G(map(f;s))
||L||
By:
Auto
THEN
Analyze
THEN
Try (Complete Auto)
THEN
RWO
Thm*
f:(A
B), as:A List. ||map(f;as)|| = ||as||
0
THEN
RWO
Thm*
f:(A
B), as:A List, n:
||as||. map(f;as)[n] = f(as[n])
0
THEN
AllHyps
(
h.
((FwdThru
Thm*
k:
, f:(
k

). increasing(f;k) 
(
x,y:
k. x < y 
f(x) < f(y))
[h])
THEN
(BackThru -1))
THEN
EasyHyp)
Generated subgoals:
None
About: