(60steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc

At: paren interval 2

1. T: Type
s1,s2:(T+T) List. (no_repeats(T+T;s1) (s1@0,s2,s3:(T+T) List, x:T. s1 = (s1@0 @ [inl(x)] @ s2 @ [inr(x)] @ s3) paren(T;s2))) (no_repeats(T+T;s2) (s1,s2@0,s3:(T+T) List, x:T. s2 = (s1 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3) paren(T;s2@0))) paren(T;s1) paren(T;s2) no_repeats(T+T;s1 @ s2) (s1@0,s2@0,s3:(T+T) List, x:T. (s1 @ s2) = (s1@0 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3) paren(T;s2@0))

By:
Auto
THEN
RWO Thm* l1,l2:T List. no_repeats(T;l1 @ l2) l_disjoint(T;l1;l2) & no_repeats(T;l1) & no_repeats(T;l2) 8
THEN
EqualAppendsD -1
THEN
Analyze -1


Generated subgoals:

12. s1: (T+T) List
3. s2: (T+T) List
4. no_repeats(T+T;s1) (s1@0,s2,s3:(T+T) List, x:T. s1 = (s1@0 @ [inl(x)] @ s2 @ [inr(x)] @ s3) paren(T;s2))
5. no_repeats(T+T;s2) (s1,s2@0,s3:(T+T) List, x:T. s2 = (s1 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3) paren(T;s2@0))
6. paren(T;s1)
7. paren(T;s2)
8. l_disjoint(T+T;s1;s2) & no_repeats(T+T;s1) & no_repeats(T+T;s2)
9. s1@0: (T+T) List
10. s2@0: (T+T) List
11. s3: (T+T) List
12. x: T
13. (s1 @ s2) = (s1@0 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3)
14. e: (T+T) List
15. s1 = (s1@0 @ e)
16. ([inl(x)] @ s2@0 @ [inr(x)] @ s3) = (e @ s2)
paren(T;s2@0)
29 steps
 
22. s1: (T+T) List
3. s2: (T+T) List
4. no_repeats(T+T;s1) (s1@0,s2,s3:(T+T) List, x:T. s1 = (s1@0 @ [inl(x)] @ s2 @ [inr(x)] @ s3) paren(T;s2))
5. no_repeats(T+T;s2) (s1,s2@0,s3:(T+T) List, x:T. s2 = (s1 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3) paren(T;s2@0))
6. paren(T;s1)
7. paren(T;s2)
8. l_disjoint(T+T;s1;s2) & no_repeats(T+T;s1) & no_repeats(T+T;s2)
9. s1@0: (T+T) List
10. s2@0: (T+T) List
11. s3: (T+T) List
12. x: T
13. (s1 @ s2) = (s1@0 @ [inl(x)] @ s2@0 @ [inr(x)] @ s3)
14. e: (T+T) List
15. s1@0 = (s1 @ e)
16. s2 = (e @ [inl(x)] @ s2@0 @ [inr(x)] @ s3)
paren(T;s2@0)
1 step

About:
listconsnilunioninlinruniverseequalimpliesandall

(60steps total) PrintForm Definitions Lemmas graph 1 2 Sections Graphs Doc