graph 1 3 Sections Graphs Doc

Def P Q == PQ

is mentioned by

Thm* For any graph the_obj:GraphObject(the_graph), L:V List. (i:V. (i L)) (non-trivial-loop-free(the_graph) topsortedl(the_graph;L;topsortl(the_obj;L))) & (i:V. (i topsortl(the_obj;L))) & no_repeats(V;topsortl(the_obj;L))[topsortl-properties]
Thm* For any graph the_obj:GraphObject(the_graph), L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & dfsl-traversal(the_graph;L;dfsl(the_obj;L)) & (i:V. (i L) (inr(i) dfsl(the_obj;L)) & (inl(i) dfsl(the_obj;L)))[dfsl-properties]
Thm* For any graph the_obj:GraphObject(the_graph), L:V List, s:Traversal, x:V. dfl-traversal(the_graph;L;s) (j:V. (inr(j) s) (inl(j) s) j-the_graph- > *x) dfl-traversal(the_graph;L @ [x];dfs(the_obj;s;x))[dfs-dfl-traversal]
Thm* For any graph the_obj:GraphObject(the_graph). L:V List. (non-trivial-loop-free(the_graph) topsorted(the_graph;L)) & (i:V. (i L)) & no_repeats(V;L)[topsort-exists]
Thm* For any graph the_obj:GraphObject(the_graph). (non-trivial-loop-free(the_graph) topsorted(the_graph;topsort(the_obj))) & (i:V. (i topsort(the_obj))) & no_repeats(V;topsort(the_obj))[topsort-properties]
Thm* For any graph the_obj:GraphObject(the_graph), P:(TraversalProp). P(nil) (s:Traversal, i:V. paren(V;s) no_repeats(V+V;s) P(s) P(dfs(the_obj;s;i))) paren(V;depthfirst(the_obj)) & no_repeats(V+V;depthfirst(the_obj)) & P(depthfirst(the_obj))[depthfirst_induction2]
Thm* For any graph the_obj:GraphObject(the_graph), P:(TraversalProp). P(nil) (s:Traversal, i:V. P(s) P(dfs(the_obj;s;i))) P(depthfirst(the_obj))[depthfirst_induction]
Thm* For any graph the_obj:GraphObject(the_graph), P:((V List)TraversalProp). P(nil,nil) (L:V List, s:Traversal, i:V. paren(V;s) no_repeats(V+V;s) P(L,s) P(L @ [i],dfs(the_obj;s;i))) (L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L)))[dfsl-induction2]
Thm* For any graph the_obj:GraphObject(the_graph), P:((V List)TraversalProp). P(nil,nil) (L:V List, s:Traversal, i:V. P(L,s) P(L @ [i],dfs(the_obj;s;i))) (L:V List. P(L,dfsl(the_obj;L)))[dfsl-induction1]
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. df-traversal(the_graph;s) (j:V. (inr(j) s) (inl(j) s) j-the_graph- > *i) df-traversal(the_graph;dfs(the_obj;s;i))[dfs-df-traversal]
Thm* For any graph the_obj:GraphObject(the_graph), P:(VTraversalTraversalProp), s:Traversal, i:V. (s:Traversal, i:V. (inl(i) s) (inr(i) s) P(i,s,nil)) (s1,s2,s3:Traversal, i,j:V. i-the_graph- > j paren(V;s2) (k:V. (inr(k) s2) j-the_graph- > *k) paren(V;s3) P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)) (s1,s2:Traversal, i:V. (inr(i) s1) (inl(i) s1) paren(V;s2) l_disjoint(V+V;s2;s1) no_repeats(V+V;s2) (j:V. (inr(j) s2) i-the_graph- > *j) (j:V. i-the_graph- > j j = i (inl(j) s2) (inl(j) s1) (inr(j) s1)) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])) (s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s))[dfs_induction4]
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s) s' = nil) & ((inr(i) s) & (inl(i) s) (s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)[dfs-properties]
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)[dfs-connect]
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s) s' = nil) & ((inr(i) s) & (inl(i) s) (s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & dfs(the_obj;s;i) = (s' @ s)[dfs-cases]
Thm* For any graph the_obj:GraphObject(the_graph), P:(VTraversalTraversalProp), s:Traversal, i:V. (s1,s2:Traversal, i:V. P(i,s1,s2) l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2)) (s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s) P(i,s,nil)) (s1,s2,s3:Traversal, i,j:V. i-the_graph- > j P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)) (s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1) (j:V. i-the_graph- > j j = i (inl(j) s2) member-paren(x,y.the_obj.eq(x,y);j;s1)) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])) (s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s))[dfs_induction3]
Thm* For any graph the_obj:GraphObject(the_graph), l:V List, s:Traversal. s':Traversal. (i:V. (i l) (inl(i) s') (inl(i) s) (inr(i) s)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & list_accum(s',j.dfs(the_obj;s';j);s;l) = (s' @ s)[dfs_accum_member]
Thm* For any graph the_obj:GraphObject(the_graph), P:(VTraversalTraversalProp), s:Traversal, i:V. (s:Traversal, i:V. (inl(i) s) (inr(i) s) P(i,s,nil)) (s1,s2,s3:Traversal, i,j:V. i-the_graph- > j paren(V;s2) paren(V;s3) P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)) (s1,s2:Traversal, i:V. (inl(i) s1) (inr(i) s1) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])) (s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s))[dfs_induction2]
Thm* For any graph the_obj:GraphObject(the_graph), P:(VTraversalTraversalProp), s:Traversal, i:V. (s1,s2:Traversal, i:V. P(i,s1,s2) l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2)) (s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s) P(i,s,nil)) (s1,s2,s3:Traversal, i,j:V. i-the_graph- > j P(j,s1,s2) P(i,s2 @ s1,s3) P(i,s1,s3 @ s2)) (s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1) P(i,[inr(i) / s1],s2) P(i,s1,[inl(i) / (s2 @ [inr(i)])])) (s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s))[dfs_induction]
Thm* For any graph the_obj:GraphObject(the_graph). M:(Traversal). (i:V, s:Traversal. M([inl(i) / s])M(s)) & (i:V, s:Traversal. member-paren(x,y.the_obj.eq(x,y);i;s) M([inr(i) / s]) < M(s))[dfs-measure]
Thm* For any graph the_obj:GraphObject(the_graph), P,Q:(V). (x:V. P(x) Q(x)) (x:V. P(x) & Q(x)) vertex-count(the_obj;x.P(x)) < vertex-count(the_obj;x.Q(x))[vertex-count-less]
Thm* For any graph the_obj:GraphObject(the_graph), P,Q:(V). (x:V. P(x) Q(x)) vertex-count(the_obj;x.P(x))vertex-count(the_obj;x.Q(x))[vertex-count-le]

In prior sections: core well fnd int 1 bool 1 sqequal 1 prog 1 fun 1 int 2 list 1 union rel 1 mb basic mb nat mb list 1 num thy 1 mb list 2 graph 1 1 graph 1 2

Try larger context: Graphs

graph 1 3 Sections Graphs Doc