Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
gro_eacc Def t.eacc == 1of(2of(2of(t)))
Thm* For any graph t:GraphObject(the_graph), T:Type. t.eacc (TVT)TVT
gro_eaccw Def t.eaccw == 1of(2of(2of(2of(t))))
Thm* For any graph t:GraphObject(the_graph). t.eaccw (T:Type, s:T, x:V, f:(TVT). L:V List. (y:V. x-the_graph- > y (y L)) & t.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))
gro_eq Def t.eq == 1of(t)
Thm* For any graph t:GraphObject(the_graph). t.eq VV
gro_eqw Def t.eqw == 1of(2of(t))
Thm* For any graph t:GraphObject(the_graph). t.eqw (x,y:V. t.eq(x,y) x = y)
gro_other Def t.other == 2of(2of(2of(2of(2of(2of(t))))))
Thm* For any graph t:GraphObject(the_graph). t.other Top
gro_vacc Def t.vacc == 1of(2of(2of(2of(2of(t)))))
Thm* For any graph t:GraphObject(the_graph), T:Type. t.vacc (TVT)TT
gro_vaccw Def t.vaccw == 1of(2of(2of(2of(2of(2of(t))))))
Thm* For any graph t:GraphObject(the_graph). t.vaccw (T:Type, s:T, f:(TVT). L:V List. no_repeats(V;L) & (y:V. (y L)) & t.vacc(f,s) = list_accum(s',x'.f(s',x');s;L))
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'

About:
pairproductproductlistlist_ind
boolassertless_thanisectapplyfunctionrecursive_def_noticeuniverseequal
membertoppropimpliesandallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc