Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
assert Def b == if b True else False fi
Thm* b:. b Prop
dfs Def dfs(the_obj;s;i) == if member-paren(x,y.the_obj.eq(x,y);i;s) s else [inl(i) / (the_obj.eacc((s',j. dfs(the_obj;s';j)),[inr(i) / s],i))] fi (recursive)
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. dfs(the_obj;s;i) Traversal
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
traversal Def traversal(G) == (Vertices(G)+Vertices(G)) List
Thm* For any graph Traversal Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
gro_eacc Def t.eacc == 1of(2of(2of(t)))
Thm* For any graph t:GraphObject(the_graph), T:Type. t.eacc (TVT)TVT
gro_eq Def t.eq == 1of(t)
Thm* For any graph t:GraphObject(the_graph). t.eq VV
gro_vacc Def t.vacc == 1of(2of(2of(2of(2of(t)))))
Thm* For any graph t:GraphObject(the_graph), T:Type. t.vacc (TVT)TT
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
member-paren Def member-paren(x,y.E(x;y);i;s) == (xs.InjCase(x; a. E(a;i), E(a;i)))
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
pairproductproductlistconslist_ind
boolifthenelseassertless_thanunioninlinrdecide
isectlambdaapplyfunctionrecursive_def_noticeuniverseequalmember
toppropimpliesandfalsetrueallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc