Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
paren Def paren(T;s) == s = nil (T+T) List (t:T, s':(T+T) List. s = ([inl(t)] @ s' @ [inr(t)]) & paren(T;s')) (s',s'':(T+T) List. ||s'|| < ||s|| & ||s''|| < ||s|| & s = (s' @ s'') & paren(T;s') & paren(T;s'')) (recursive)
Thm* T:Type, s:(T+T) List. paren(T;s) Prop
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
assert Def b == if b True else False fi
Thm* b:. b Prop
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
traversal Def traversal(G) == (Vertices(G)+Vertices(G)) List
Thm* For any graph Traversal Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
gro_eq Def t.eq == 1of(t)
Thm* For any graph t:GraphObject(the_graph). t.eq VV
l_disjoint Def l_disjoint(T;l1;l2) == x:T. ((x l1) & (x l2))
Thm* T:Type, l,l':T List. l_disjoint(T;l;l') Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
member-paren Def member-paren(x,y.E(x;y);i;s) == (xs.InjCase(x; a. E(a;i), E(a;i)))
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
pairproductproductlistconsconsnillist_ind
boolifthenelseassertnatural_numberless_thanunioninlinr
decideisectapplyfunctionrecursive_def_notice
universeequalmembertoppropimpliesandorfalsetrueall
exists!abstraction

Definitions graph 1 3 Sections Graphs Doc