Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
depthfirst Def depthfirst(the_obj) == the_obj.vacc((s,i. dfs(the_obj;s;i)),nil)
Thm* For any graph the_obj:GraphObject(the_graph). depthfirst(the_obj) Traversal
dfs Def dfs(the_obj;s;i) == if member-paren(x,y.the_obj.eq(x,y);i;s) s else [inl(i) / (the_obj.eacc((s',j. dfs(the_obj;s';j)),[inr(i) / s],i))] fi (recursive)
Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. dfs(the_obj;s;i) Traversal
graphobj Def GraphObject(the_graph) == eq:Vertices(the_graph)Vertices(the_graph)(x,y:Vertices(the_graph). (eq(x,y)) x = y)(eacc:(T:Type. (TVertices(the_graph)T)TVertices(the_graph)T)(T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))(vacc:(T:Type. (TVertices(the_graph)T)TT)(T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L))Top))
Thm* the_graph:Graph. GraphObject(the_graph) Type{i'}
traversal Def traversal(G) == (Vertices(G)+Vertices(G)) List
Thm* For any graph Traversal Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
paren Def paren(T;s) == s = nil (T+T) List (t:T, s':(T+T) List. s = ([inl(t)] @ s' @ [inr(t)]) & paren(T;s')) (s',s'':(T+T) List. ||s'|| < ||s|| & ||s''|| < ||s|| & s = (s' @ s'') & paren(T;s') & paren(T;s'')) (recursive)
Thm* T:Type, s:(T+T) List. paren(T;s) Prop
so_lambda1Def (1. b(1))(1) == b(1)

About:
productproductlistconsconsnilboolifthenelseless_thanunion
inlinrisectlambdaapplyfunctionrecursive_def_noticeuniverse
equalmembertoppropimpliesandorallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc