Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjm-graph Def adjm-graph(A) == < vertices = A.size, edges = {p:(A.sizeA.size)| (A.adj(1of(p),2of(p))) }, incidence = e.e >
adjmatrix Def AdjMatrix == size:sizesize
Thm* AdjMatrix Type
assert Def b == if b True else False fi
Thm* b:. b Prop
eq_adjm Def x =M= y == x=y
Thm* M:AdjMatrix, x,y:Vertices(adjm-graph(M)). x =M= y
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop

About:
productproductboolifthenelseassertitnatural_numbersetlambdaapply
functionuniversememberpropimpliesandfalsetrueall!abstraction

Definitions graph 1 3 Sections Graphs Doc