Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjm_adj Def t.adj == 2of(t)
Thm* t:AdjMatrix. t.adj t.sizet.size
adjm_size Def t.size == 1of(t)
Thm* t:AdjMatrix. t.size
adjmatrix Def AdjMatrix == size:sizesize
Thm* AdjMatrix Type
assert Def b == if b True else False fi
Thm* b:. b Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
mkgraph Def < vertices = v, edges = e, incidence = f > == < v,e,f,o >
Thm* v,e:Type, f:(evv), o:Top. < vertices = v, edges = e, incidence = f > Graph
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
pairspreadspreadproductproductlistconsnilbool
ifthenelseassertintnatural_numberaddless_thanset
lambdaapplyfunctionrecursive_def_noticeuniverseequal
membertoppropimpliesandfalsetrueall
exists!abstraction

Definitions graph 1 3 Sections Graphs Doc