Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl-graph Def adjl-graph(G) == < vertices = G.size, edges = x:G.size||G.out(x)||, incidence = e. < 1of(e),(G.out(1of(e)))[2of(e)] > >
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
assert Def b == if b True else False fi
Thm* b:. b Prop
eq_adjl Def x =A= y == x=y
Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop

About:
pairproductlistboolifthenelseassertitnatural_numberlambdaapply
functionuniversememberpropimpliesandfalsetrueall!abstraction

Definitions graph 1 3 Sections Graphs Doc