Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl-edge-accum Def adjl-edge-accum(A;s',x'.f(s';x');s;x) == list_accum(s',x'.f(s';x');s;A.out(x))
adjl-graph Def adjl-graph(G) == < vertices = G.size, edges = x:G.size||G.out(x)||, incidence = e. < 1of(e),(G.out(1of(e)))[2of(e)] > >
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
nat Def == {i:| 0i }
Thm* Type
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
pairspreadspreadproductproductlistnillist_ind
itintnatural_numberaddless_thansetlambdaapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandallexists!abstraction

Definitions graph 1 3 Sections Graphs Doc