Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
nat Def == {i:| 0i }
Thm* Type
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
productlistconsnilifthenelseint
natural_numberaddless_thansetfunction
recursive_def_noticeuniverseequalmemberpropimplies
all!abstraction

Definitions graph 1 3 Sections Graphs Doc