Definitions graph 1 3 Sections Graphs Doc

Some definitions of interest.
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
upto Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive)
Thm* i,j:. upto(i;j) {i..j} List

About:
productlistconsnilifthenelseintnatural_number
addless_thansetfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandallexists
!abstraction

Definitions graph 1 3 Sections Graphs Doc