| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
filter | Def filter(P;l) == reduce( a,v. if P(a) [a / v] else v fi;nil;l) |
| | Thm* T:Type, P:(T  ), l:T List. filter(P;l) T List |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
upto | Def upto(i;j) == if i < j [i / upto(i+1;j)] else nil fi (recursive) |
| | Thm* i,j: . upto(i;j) {i..j } List |