graph 1 3 Sections Graphs Doc

RankTheoremName
17 Thm* For any graph the_obj:GraphObject(the_graph), L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & dfsl-traversal(the_graph;L;dfsl(the_obj;L)) & (i:V. (i L) (inr(i) dfsl(the_obj;L)) & (inl(i) dfsl(the_obj;L)))[dfsl-properties]
cites
13 Thm* For any graph the_obj:GraphObject(the_graph), P:((V List)TraversalProp). P(nil,nil) (L:V List, s:Traversal, i:V. paren(V;s) no_repeats(V+V;s) P(L,s) P(L @ [i],dfs(the_obj;s;i))) (L:V List. paren(V;dfsl(the_obj;L)) & no_repeats(V+V;dfsl(the_obj;L)) & P(L,dfsl(the_obj;L)))[dfsl-induction2]
1 Thm* For any graph dfsl-traversal(the_graph;nil;nil)[dfsl-traversal-nil]
16 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. df-traversal(the_graph;s) (j:V. (inr(j) s) (inl(j) s) j-the_graph- > *i) df-traversal(the_graph;dfs(the_obj;s;i))[dfs-df-traversal]
14 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s) s' = nil) & ((inr(i) s) & (inl(i) s) (s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)[dfs-properties]
1 Thm* For any graph the_obj:GraphObject(the_graph), x,y:V. Dec(x = y)[decidable__equal_gr_v]
3 Thm* (x,y:T. Dec(x = y)) (s:(T+T) List, i:T. Dec((inl(i) s)))[decidable__l_member_paren]
3 Thm* For any graph A:V List, x:V. A-- > *[x] A-- > *x[list-list-connect-singleton]
4 Thm* For any graph L1,L2:V List, s:Traversal. L1-- > *L2 dfsl-traversal(the_graph;L1;s) dfsl-traversal(the_graph;L1 @ L2;s)[dfsl-traversal-append]
2 Thm* a,b:T List, t:T. l_disjoint(T;b;[t / a]) (t b) & l_disjoint(T;b;a)[l_disjoint_cons2]
2 Thm* l1,l2:T List. no_repeats(T;l1 @ l2) l_disjoint(T;l1;l2) & no_repeats(T;l1) & no_repeats(T;l2)[no_repeats_append_iff]
4 Thm* s:(T+T) List. paren(T;s) no_repeats(T+T;s) (s1,s2,s3:(T+T) List, x:T. s = (s1 @ [inl(x)] @ s2 @ [inr(x)] @ s3) paren(T;s2))[paren_interval]
3 Thm* a,b,c:T List. l_disjoint(T;a @ b;c) l_disjoint(T;a;c) & l_disjoint(T;b;c)[l_disjoint_append]
0 Thm* a,b,c:Top List. ((a @ b) @ c) ~ (a @ b @ c)[append_assoc_sq]
1 Thm* s',s3:(T+T) List. paren(T;s') paren(T;s3) paren(T;s3 @ s')[append_paren]
3 Thm* For any graph A,B:V List, i:V. A @ B-- > *i A-- > *i B-- > *i[list-connect-append]
0 Thm* l:T List. (l @ nil) ~ l[append_nil_sq]
3 Thm* s':(T+T) List. paren(T;s') (i:T. (inl(i) s') (inr(i) s'))[paren_balance1]
3 Thm* For any graph i,j:V. [i]-- > *j i-the_graph- > *j[list-connect-singleton]
0 Thm* a,x:T. (x [a]) x = a[member_singleton]
2 Thm* x:T, l1,l2:T List. (x l1 @ l2) (x l1) (x l2)[member_append]
3 Thm* s':(T+T) List. paren(T;s') (i:T. (inr(i) s') (inl(i) s'))[paren_balance2]
14 Thm* For any graph the_obj:GraphObject(the_graph), L:V List. (iL.(inr(i) dfsl(the_obj;L)) & (inl(i) dfsl(the_obj;L)))[dfsl_member]

graph 1 3 Sections Graphs Doc