(11steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc

At: dfs-cases 2 1 2

1. the_graph: Graph
2. the_obj: GraphObject(the_graph)
3. s: traversal(the_graph)
4. i: Vertices(the_graph)
5. x,y:Vertices(the_graph). the_obj.eq(x,y) x = y
6. T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)
7. T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)
8. ((inl(i) s) (inr(i) s))
9. L: Vertices(the_graph) List
10. u: Vertices(the_graph)
11. v: Vertices(the_graph) List
12. s:traversal(the_graph). s2:traversal(the_graph). list_accum(s',j.dfs(the_obj;s';j);s;v) = (s2 @ s)
13. s1: traversal(the_graph)
s2:traversal(the_graph). list_accum(s',j.dfs(the_obj;s';j);dfs(the_obj;s1;u);v) = (s2 @ s1)

By:
InstHyp [dfs(the_obj;s1;u)] -2
THEN
ExRepD
THEN
HypSubst -1 0
THEN
Inst Thm* dfs_member [the_graph;the_obj;s1;u]
THEN
ExRepD
THEN
HypSubst -1 0


Generated subgoal:

114. s2: traversal(the_graph)
15. list_accum(s',j.dfs(the_obj;s';j);dfs(the_obj;s1;u);v) = (s2 @ dfs(the_obj;s1;u))
16. s': traversal(the_graph)
17. (inl(u) s') (inl(u) s1) (inr(u) s1)
18. l_disjoint(Vertices(the_graph)+Vertices(the_graph);s';s1)
19. no_repeats(Vertices(the_graph)+Vertices(the_graph);s')
20. paren(Vertices(the_graph);s')
21. dfs(the_obj;s1;u) = (s' @ s1)
s2@0:traversal(the_graph). (s2 @ s' @ s1) = (s2@0 @ s1) traversal(the_graph)
1 step

About:
listassertunioninlinrapplyfunction
universeequalandorallexists

(11steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc