(4steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc

At: vertex-subset-properties 1

1. the_graph: Graph
2. the_obj: GraphObject(the_graph)
3. P: Vertices(the_graph)
4. x,y:Vertices(the_graph). the_obj.eq(x,y) x = y
5. T:Type, s:T, x:Vertices(the_graph), f:(TVertices(the_graph)T). L:Vertices(the_graph) List. (y:Vertices(the_graph). x-the_graph- > y (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)
6. T:Type, s:T, f:(TVertices(the_graph)T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & (y:Vertices(the_graph). (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)
no_repeats(Vertices(the_graph);vertex-subset(the_obj;x.P(x))) & (x:Vertices(the_graph). (x vertex-subset(the_obj;x.P(x))) P(x))

By:
Unfold `vertex-subset` 0
THEN
InstHyp [Vertices(the_graph) List;nil;l,x. if P(x) [x / l] else l fi] -1
THEN
ExRepD
THEN
HypSubst -1 0
THEN
Thin -1


Generated subgoal:

17. L: Vertices(the_graph) List
8. no_repeats(Vertices(the_graph);L)
9. y:Vertices(the_graph). (y L)
no_repeats(Vertices(the_graph);list_accum(s',x'.(l,x. if P(x) [x / l] else l fi)(s',x');nil;L)) & (x:Vertices(the_graph). (x list_accum(s',x'.(l,x. if P(x) [x / l] else l fi)(s',x');nil;L)) P(x))
2 steps

About:
listconsnilboolifthenelseassertlambda
applyfunctionuniverseequalandallexists

(4steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc